首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80097篇
  免费   8776篇
  国内免费   3597篇
电工技术   1295篇
技术理论   1篇
综合类   3814篇
化学工业   26158篇
金属工艺   12571篇
机械仪表   3130篇
建筑科学   2696篇
矿业工程   1096篇
能源动力   1671篇
轻工业   9322篇
水利工程   361篇
石油天然气   1481篇
武器工业   478篇
无线电   2922篇
一般工业技术   20359篇
冶金工业   3419篇
原子能技术   340篇
自动化技术   1356篇
  2024年   317篇
  2023年   1809篇
  2022年   2506篇
  2021年   3465篇
  2020年   3358篇
  2019年   2899篇
  2018年   3113篇
  2017年   3563篇
  2016年   3686篇
  2015年   3856篇
  2014年   4567篇
  2013年   5676篇
  2012年   5105篇
  2011年   6206篇
  2010年   4219篇
  2009年   4599篇
  2008年   3809篇
  2007年   4220篇
  2006年   4013篇
  2005年   3212篇
  2004年   3107篇
  2003年   2647篇
  2002年   2177篇
  2001年   1575篇
  2000年   1462篇
  1999年   1167篇
  1998年   1010篇
  1997年   919篇
  1996年   709篇
  1995年   617篇
  1994年   477篇
  1993年   371篇
  1992年   361篇
  1991年   282篇
  1990年   329篇
  1989年   296篇
  1988年   142篇
  1987年   83篇
  1986年   75篇
  1985年   101篇
  1984年   105篇
  1983年   68篇
  1982年   88篇
  1981年   10篇
  1980年   42篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   7篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
91.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
92.
The electromagnetic shielding effectiveness of kenaf fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted for removing the lignin and extractives from the fibers and magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by the compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a variable frequency from 9 GHz to 11 GHz. Using the Scanning Electron Microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with the magnetizing treatments increased from 44.8 mJ/m2 to 46.1 mJ/m2, 48.8 mJ/m2 and 53.0 mJ/m2, respectively, while the modulus of elasticity reduced from 2875 MPa to 2729 MPa, 2487 MPa and 2007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30–50% to 60–70%, 65–75% and 70–80%, respectively.  相似文献   
93.
Rolling contact fatigue in bearing steels is manifested by dark-etching regions, which are attributed to deformation induced tempering. In order to quantitatively explain this phenomenon, a model is suggested for martensite tempering assisted by dislocation glide during rolling contact fatigue. In the model, dislocations transport carbon from the matrix to carbide particles, provided that the carbon is located at a certain distance range from the dislocation contributing to the tempering process. By calculating the amount of carbon in the matrix, the kinetics of carbide thickening and hardness reduction are computed. It is found that the dark-etching region kinetics can be controlled by both bearing operation conditions (temperature and deformation rate) and microstructure (type, size, and volume fraction of carbides). The model is validated against tested bearings, and its limitations are discussed.  相似文献   
94.
In this study, the crystal structure, thermal, oxygen transport, electrical conductivity and electrochemical properties of the perovskite NdBa0.5Sr0.5Co2O5+δ (NBSC55) are investigated. In the temperature range of 250 °C–350 °C, the weight loss upon heating was due to a partial loss of lattice oxygen and along with a reduction of Co4+ to Co3+. The tend of weight-loss slows down as temperature increased above 350 °C indicating a reduction of Co3+ to Co2+ during this stage. The oxygen migration is dominated by surface exchange process at high temperature range (650-800 °C); however, the bulk diffusion process prevails at low temperature range (500–600 °C). For long-term testing, the polarization resistance of NBSC55 increases gradually form 3.13 Ω cm2 for 2 h to 3.34 Ω cm2 for 96 h at 600 °C and an increasing-rate for polarization resistance is around 0.22% h?1. The power density of the single cell with NBSC55 cathode reached 341 mW cm?2 at 800 °C.  相似文献   
95.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   
96.
张迪  杨刚  刘冬鹏  张小玲 《化工学报》2020,71(9):3995-4005
高温热泵可以有效回收工业余热,达到节能减排和保护环境的目的。目前,有关高温热泵技术的研究热点在于寻找一种全球变暖潜能值(GWP)低、使用性能良好的工质,以替代现有CFC-114、HFC-245fa工质。对新型环境友好型工质HFO-1234ze(Z)进行了综述,其GWP<1,临界温度高于423 K,是一种潜在的高温热泵替代工质。总结了近年来国内外学者对HFO-1234ze(Z)的合成技术、热力学性质、输运性质、传热性能等方面的研究,并分析了HFO-1234ze(Z)在高温热泵系统中应用的可行性,认为HFO-1234ze(Z)在高温热泵中具有较好的工作性能和发展前景。  相似文献   
97.
《Ceramics International》2020,46(15):24213-24224
We report an experimental approach, designed based on the recent findings that domain switching in ferroelectric ceramics can be separated into three regimes during antiparallel electric field loading, to investigate the influence of domain switching process on the electrical fatigue behavior of ferroelectrics. Uniaxial compressive stress (−2 MPã -100 MPa) and thermal loading (20 °C–150 °C) were used to tune the domain switching process. Under the same loading condition, the bipolar electrical fatigue behavior of soft lead zirconate titanate ceramics was systematically characterized. The amplitude and frequency of the applied electric field are 2 kV/mm and 10 Hz, respectively. By analyzing the evolution of the domain switching process, combined with the measured polarization and strain response, as well as the cracks observed on the surface of the specimen, it is found that the fatigue of ferroelectric ceramics was mainly related to the domain switching process near the coercive electric field: the regime 2 defined in this paper. The underlying mechanism was further discussed by considering the interplay between the domain switching process with the main factors affecting the electrical fatigue of ferroelectrics, namely defect redistribution, charge carrier injection, and crack initiation.  相似文献   
98.
A one‐dimensional phenomenological constitutive model, representing the nonlinear viscoelastic behavior of polymers is developed in this study. The proposed model is based on a modification of the well‐known three element standard solid model. The linear dashpot is replaced by an Eyring type one, while the nonlinearity is enhanced by a nonlinear, strain dependent spring constant. The new constitutive model was proved to be capable of capturing the main aspects of nonlinear viscoelastic response, namely, monotonic and cyclic loading, creep and stress relaxation, with the same parameter values. Model validation was tested on the experimental results at various modes of deformation for two elastomeric type materials, performed elsewhere. A very good agreement between model simulations and experimental data was obtained in all cases. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42141.  相似文献   
99.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
100.
The stretchable electrodes with excellent flexibility, electrical conductivity, and mechanical durability are the most fundamental components in the emerging and exciting field of flexible electronics. This article proposes a method for fabrication of such a stretchable electrode by embedding silver nanorods (AgNRs) into a polydimethylsiloxane (PDMS) matrix that is grown by a unique glancing angle deposition technique. The surface, mechanical, and electrical properties of PDMS are significantly changed after embedding the AgNRs in it. The results show that surface roughness and polarity increase after AgNRs are embedded in the PDMS matrix. Elastic modulus (E) and hardness (H) decrease with an increase in the indentation load as a result of the indentation depth effect. Due to strong interfacial adhesion of AgNRs embedded in the PDMS matrix, the E and H of nanocomposite are increased by 167.6 and 93.3% compared with PDMS film, respectively. Furthermore, the AgNRs-PDMS film has an electrical resistivity value in the order of 10−7 Ωm. It remains conductive during various mechanical strains such as bending, twisting, and stretching, which is demonstrated using a light-emitting diode circuit. Simultaneously, the antimicrobial activity of silver could make it a promising candidate for wearable electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号